deeptrack.noises Module#
Features for introducing noise to images.
This module provides classes to add various types of noise to images, including constant offsets, Gaussian noise, and Poisson-distributed noise.
Module Structure#
Classes:
Noise: Abstract base class for noise models.
Background / Offset: Adds a constant value to an image.
Gaussian: Adds IID Gaussian noise.
ComplexGaussian: Adds complex-valued Gaussian noise.
Poisson: Adds Poisson-distributed noise based on signal-to-noise ratio.
Example#
Add Gaussian noise to an image:
>>> import numpy as np
>>> image = np.ones((100, 100))
>>> gaussian_noise = noises.Gaussian(mu=0, sigma=0.1)
>>> noisy_image = gaussian_noise.resolve(image)
Add Poisson noise with a specified signal-to-noise ratio:
>>> poisson_noise = noises.Poisson(snr=0.5)
>>> noisy_image = poisson_noise.resolve(image)
Classes#
|
Adds a constant value to an image |
|
Adds complex-valued IID Gaussian noise to an image. |
|
Base feature class. |
|
Adds IID Gaussian noise to an image. |
|
Wrapper for array-like values with property tracking. |
|
Base abstract noise class. |
alias of |
|
|
Adds Poisson-distributed noise to an image. |