deeptrack.noises Module#

Features for introducing noise to images.

This module provides classes to add various types of noise to images, including constant offsets, Gaussian noise, and Poisson-distributed noise.

Module Structure#

Classes:

  • Noise: Abstract base class for noise models.

  • Background / Offset: Adds a constant value to an image.

  • Gaussian: Adds IID Gaussian noise.

  • ComplexGaussian: Adds complex-valued Gaussian noise.

  • Poisson: Adds Poisson-distributed noise based on signal-to-noise ratio.

Example#

Add Gaussian noise to an image:

>>> import numpy as np
>>> image = np.ones((100, 100))
>>> gaussian_noise = noises.Gaussian(mu=0, sigma=0.1)
>>> noisy_image = gaussian_noise.resolve(image)

Add Poisson noise with a specified signal-to-noise ratio:

>>> poisson_noise = noises.Poisson(snr=0.5)
>>> noisy_image = poisson_noise.resolve(image)

Classes#

Background(offset, **kwargs)

Adds a constant value to an image

ComplexGaussian([mu, sigma])

Adds complex-valued IID Gaussian noise to an image.

Feature([_input])

Base feature class.

Gaussian([mu, sigma])

Adds IID Gaussian noise to an image.

Image(value[, copy])

Wrapper for array-like values with property tracking.

Noise([_input])

Base abstract noise class.

Offset

alias of Background

Poisson(*args[, snr, background, max_val])

Adds Poisson-distributed noise to an image.