OneHot#

class deeptrack.features.OneHot(num_classes: int, **kwargs: Dict[str, Any])#

Bases: Feature

Converts the input to a one-hot encoded array.

This feature takes an input array of integer class labels and converts it into a one-hot encoded array. The last dimension of the input is replaced by the one-hot encoding.

Parameters#

num_classesint

The total number of classes for the one-hot encoding.

**kwargsDict[str, Any]

Additional keyword arguments passed to the parent Feature class.

Example#

>>> import numpy as np
>>> from deeptrack.features import OneHot

Create an input array of class labels:

>>> input_data = np.array([0, 1, 2])

Apply a OneHot feature:

>>> one_hot_feature = OneHot(num_classes=3)
>>> one_hot_encoded = one_hot_feature.get(input_data, num_classes=3)
>>> print(one_hot_encoded)
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

Methods Summary

get(image, num_classes, **kwargs)

Convert the input array of class labels into a one-hot encoded array.

Methods Documentation

get(image: ndarray, num_classes: int, **kwargs: Dict[str, Any]) ndarray#

Convert the input array of class labels into a one-hot encoded array.

Parameters#

imagenp.ndarray

The input array of class labels. The last dimension should contain integers representing class indices.

num_classesint

The total number of classes for the one-hot encoding.

**kwargsAny

Additional keyword arguments (unused here).

Returns#

np.ndarray

The one-hot encoded array. The last dimension is replaced with one-hot vectors of length num_classes.