InverseFourierTransform#
- class deeptrack.holography.InverseFourierTransform(**kwargs)#
Bases:
FeatureApplies a power of the forward or inverse propagation matrix to an optical field.
This operation simulates multiple propagation steps in Fourier optics. Negative values of i apply the inverse transformation.
Parameters#
- Tz: np.ndarray
Forward propagation matrix.
- Tzinv: np.ndarray
Inverse propagation matrix.
- i: int
Power of the propagation matrix to apply. Negative values apply the inverse.
Methods#
- get(image: Image | np.ndarray, padding: int, **kwargs: dict[str, Any]) -> np.ndarray
Applies the power of the propagation matrix to the image.
Returns#
- Image | np.ndarray
The transformed image.
Examples#
>>> import deeptrack as dt >>> import numpy as np >>> Tz = np.random.rand(128, 128) + 1j * np.random.rand(128, 128) >>> Tzinv = 1 / Tz >>> field = np.random.rand(128, 128, 2) >>> transformed_field = dt.holography.FourierTransformTransformation( >>> Tz, Tzinv, i=2, >>> )(field)
Methods Summary
get(image[, padding])Computes the inverse Fourier transform and removes padding.
Methods Documentation
- get(image: Image | np.ndarray, padding: int = 32, **kwargs: dict[str, Any]) Image | np.ndarray#
Computes the inverse Fourier transform and removes padding.
Parameters#
- image: Image or ndarray
The image to transform.
- padding: int, optional
Number of pixels removed symmetrically after inverse transformation (default is 32).
**kwargs: dict of str to Any
Returns#
- np.ndarray
The inverse Fourier transform of the image.