Squeeze#
- class deeptrack.features.Squeeze(axis: int | Tuple[int, ...] | None = None, **kwargs: Dict[str, Any])#
Bases:
Feature
Squeeze the input image to the smallest possible dimension.
This feature removes axes of size 1 from the input image. By default, it removes all singleton dimensions. If a specific axis or axes are specified, only those axes are squeezed.
Parameters#
- axisint or Tuple[int, …], optional
The axis or axes to squeeze. Defaults to None, squeezing all axes.
- **kwargsDict[str, Any]
Additional keyword arguments passed to the parent Feature class.
Example#
>>> import numpy as np >>> from deeptrack.features import Squeeze
Create an input array with extra dimensions:
>>> input_image = np.array([[[[1], [2], [3]]]]) >>> print(input_image.shape) (1, 1, 3, 1)
Create a Squeeze feature:
>>> squeeze_feature = Squeeze(axis=0) >>> output_image = squeeze_feature(input_image) >>> print(output_image.shape) (1, 3, 1)
Without specifying an axis:
>>> squeeze_feature = Squeeze() >>> output_image = squeeze_feature(input_image) >>> print(output_image.shape) (3,)
Methods Summary
get
(image[, axis])Squeeze the input image by removing singleton dimensions.
Methods Documentation
- get(image: ndarray, axis: int | Tuple[int, ...] | None = None, **kwargs: Dict[str, Any]) ndarray #
Squeeze the input image by removing singleton dimensions.
Parameters#
- imagenp.ndarray
The input image to process.
- axisint or Tuple[int, …], optional
The axis or axes to squeeze. Defaults to None, which squeezes all axes.
- **kwargsDict[str, Any]
Additional keyword arguments (unused here).
Returns#
- np.ndarray
The squeezed image with reduced dimensions.