Squeeze#
- class deeptrack.features.Squeeze(axis: int | tuple[int, ...] | None = None, **kwargs: dict[str, Any])#
Bases:
FeatureSqueeze the input image to the smallest possible dimension.
This feature removes axes of size 1 from the input image. By default, it removes all singleton dimensions. If a specific axis or axes are specified, only those axes are squeezed.
Parameters#
- axis: int or tuple[int, …], optional
The axis or axes to squeeze. Defaults to None, squeezing all axes.
- **kwargs:: dict of str to Any
Additional keyword arguments passed to the parent Feature class.
Methods#
- get(image: np.ndarray, axis: int | tuple[int, …], **kwargs: dict[str, Any]) -> np.ndarray
Squeeze the input image by removing singleton dimensions.
Examples#
>>> import numpy as np >>> from deeptrack.features import Squeeze
Create an input array with extra dimensions: >>> input_image = np.array([[[[1], [2], [3]]]]) >>> print(input_image.shape) (1, 1, 3, 1)
Create a Squeeze feature: >>> squeeze_feature = Squeeze(axis=0) >>> output_image = squeeze_feature(input_image) >>> print(output_image.shape) (1, 3, 1)
Without specifying an axis: >>> squeeze_feature = Squeeze() >>> output_image = squeeze_feature(input_image) >>> print(output_image.shape) (3,)
Methods Summary
get(image[, axis])Squeeze the input image by removing singleton dimensions.
Methods Documentation
- get(image: np.ndarray, axis: int | tuple[int, ...] | None = None, **kwargs: dict[str, Any]) np.ndarray#
Squeeze the input image by removing singleton dimensions.
Parameters#
- image: np.ndarray
The input image to process.
- axis: int or tuple[int, …], optional
The axis or axes to squeeze. Defaults to None, which squeezes all axes.
- **kwargs:: dict of str to Any
Additional keyword arguments (unused here).
Returns#
- np.ndarray
The squeezed image with reduced dimensions.