Power#
- class deeptrack.features.Power(value: float | Callable[[...], float] = 0, **kwargs: dict[str, Any])#
Bases:
ArithmeticOperationFeatureRaise the input to a power.
This feature performs element-wise power (**) of the input.
Parameters#
- value: PropertyLike[int or float], optional
The value to take the power of the input. Defaults to 0.
- **kwargs: Any
Additional keyword arguments passed to the parent constructor.
Examples#
>>> import deeptrack as dt
Start by creating a pipeline using Power: >>> pipeline = dt.Value([1, 2, 3]) >> dt.Power(value=3) >>> pipeline.resolve() [1, 8, 27]
Equivalently, this pipeline can be created using: >>> pipeline = dt.Value([1, 2, 3]) ** 3
Which is not equivalent to: >>> pipeline = 3 ** dt.Value([1, 2, 3]) # Different result.
Or, more explicitly: >>> input_value = dt.Value([1, 2, 3]) >>> pow_feature = Power(value=3) >>> pipeline = pow_feature(input_value)