FourierTransformTransformation#
- class deeptrack.holography.FourierTransformTransformation(Tz, Tzinv, i, **kwargs)#
Bases:
FeatureApplies a power of the forward or inverse propagation matrix to an optical field.
Parameters#
- Tz: ndarray
Forward propagation matrix.
- Tzinv: ndarray
Inverse propagation matrix.
- i: int
Power of the propagation matrix to apply. Negative values apply the inverse.
Methods#
- get(image: Image | np.ndarray, Tz: np.ndarray, Tzinv: np.ndarray, i: int, **kwargs: dict[str, Any]) -> Image | np.ndarray
Applies the power of the propagation matrix to the image.
Returns#
- Image | np.ndarray
The transformed image.
Examples#
>>> import deeptrack as dt >>> import numpy as np >>> Tz = np.random.rand(128, 128) + 1j * np.random.rand(128, 128) >>> Tzinv = 1 / Tz >>> field = np.random.rand(128, 128, 2) >>> transformed_field = dt.holography.FourierTransformTransformation( >>> Tz, Tzinv, i=2, >>> )(field)
Methods Summary
get(image, Tz, Tzinv, i, **kwargs)Applies the power of the propagation matrix to the image.
Methods Documentation
- get(image: Image | np.ndarray, Tz: np.ndarray, Tzinv: np.ndarray, i: int, **kwargs: dict[str, Any]) Image | np.ndarray#
Applies the power of the propagation matrix to the image.
Parameters#
- image: Image or ndarray
The image to transform.
- Tz: np.ndarray
Forward propagation matrix.
- Tzinv: np.ndarray
Inverse propagation matrix.
- i: int
Power of the propagation matrix to apply. Negative values apply the inverse.
- **kwargs: dict of str to Any
Additional keyword arguments.
Returns#
- Image or ndarray
The transformed image.