NormalizeMinMax#
- class deeptrack.math.NormalizeMinMax(min: float | Callable[[...], float] = 0, max: float | Callable[[...], float] = 1, featurewise=True, **kwargs)#
Bases:
FeatureImage normalization.
Transforms the input to be between a minimum and a maximum value using a linear transformation.
Parameters#
- min: float
The minimum of the transformation.
- max: float
The maximum of the transformation.
- featurewise: bool
Whether to normalize each feature independently
Methods Summary
get(image, min, max, **kwargs)Transform an image [abstract method].
Methods Documentation
- get(image, min, max, **kwargs)#
Transform an image [abstract method].
Abstract method that defines how the feature transforms the input. The current value of all properties will be passed as keyword arguments.
Parameters#
- image: np.ndarray or list of np.ndarray or Image or list of Images
The image or list of images to transform.
- **kwargs: dict of str to Any
The current value of all properties in properties, as well as any global arguments passed to the feature.
Returns#
- Image or list of Images
The transformed image or list of images.
Raises#
- NotImplementedError
Raised if this method is not overridden by subclasses.