NormalizeMinMax#
- class deeptrack.math.NormalizeMinMax(min: float | Callable[[...], float] = 0, max: float | Callable[[...], float] = 1, featurewise=True, **kwargs)#
Bases:
Feature
Image normalization.
Transforms the input to be between a minimum and a maximum value using a linear transformation.
Parameters#
- minfloat
The minimum of the transformation.
- maxfloat
The maximum of the transformation.
- featurewisebool
Whether to normalize each feature independently
Methods Summary
get
(image, min, max, **kwargs)Transform an image [abstract method].
Methods Documentation
- get(image, min, max, **kwargs)#
Transform an image [abstract method].
Abstract method that defines how the feature transforms the input. The current value of all properties will be passed as keyword arguments.
Parameters#
- image‘Image’ or List[‘Image’]
The Image or list of images to transform.
- **kwargsDict[str, Any]
The current value of all properties in properties as well as any global arguments.
Returns#
- ‘Image’ or List[‘Image’]
The transformed image or list of images.
Raises#
- NotImplementedError
Must be overridden by subclasses.