Stack#
- class deeptrack.features.Stack(value: Any | Callable[[...], Any], **kwargs: Dict[str, Any])#
Bases:
Feature
Stacks the input and the value.
This feature combines the output of the input data (image) and the value produced by the specified feature (value). The resulting output is a list where the elements of the image and value are concatenated.
If either the input (image) or the value is a single Image object, it is automatically converted into a list to maintain consistency in the output format.
If B is a feature, Stack can be visualized as:
>>> A >> Stack(B) = [*A(), *B()]
Parameters#
- valuePropertyLike[Any]
The feature or data to stack with the input.
- **kwargsDict[str, Any]
Additional arguments passed to the parent Feature class.
Attributes#
- __distributed__bool
Indicates whether this feature distributes computation across inputs. Always False for Stack, as it processes all inputs at once.
Example#
Start by creating a pipeline using Stack:
>>> from deeptrack.features import Stack, Value
>>> pipeline = Value([1, 2, 3]) >> Stack(value=[4, 5]) >>> print(pipeline.resolve()) [1, 2, 3, 4, 5]
Equivalently, this pipeline can be created using:
>>> pipeline = Value([1, 2, 3]) & [4, 5]
>>> pipeline = [4, 5] & Value([1, 2, 3]) # Different result.
Methods Summary
get
(image, value, **kwargs)Concatenate the input with the value.
Methods Documentation
- get(image: Any | List[Any], value: Any | List[Any], **kwargs: Dict[str, Any]) List[Any] #
Concatenate the input with the value.
It ensures that both the input (image) and the value (value) are treated as lists before concatenation.
Parameters#
- imageAny or List[Any]
The input data to stack. Can be a single element or a list.
- valueAny or List[Any]
The feature or data to stack with the input. Can be a single element or a list.
- **kwargsDict[str, Any]
Additional keyword arguments (not used here).
Returns#
- List[Any]
A list containing all elements from image and value.