Sequence1dBlock#

class deeplay.blocks.sequence.sequence1d.Sequence1dBlock(*args, **kwargs)#

Bases: BaseBlock

Convolutional block with optional normalization and activation.

Attributes Summary

Methods Summary

GRU()

LSTM()

RNN()

append_dropout(p[, name])

Append a dropout layer to the block.

bidirectional()

forward(x)

Define the computation performed at every call.

get_default_normalization()

Returns the default normalization function for the block.

insert_dropout(p, after[, name])

Insert a dropout layer to the block.

prepend_dropout(p[, name])

Prepend a dropout layer to the block.

run_with_dummy_data()

Attributes Documentation

is_recurrent#

Methods Documentation

GRU()#
LSTM()#
RNN()#
append_dropout(p: float, name: str | None = 'dropout')#

Append a dropout layer to the block.

Parameters#

pfloat

The dropout probability.

nameOptional[str], optional

The name of the dropout layer, by default “dropout”.

bidirectional()#
forward(x)#

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

get_default_normalization() DeeplayModule#

Returns the default normalization function for the block.

insert_dropout(p: float, after: str, name: str | None = 'dropout')#

Insert a dropout layer to the block.

Parameters#

pfloat

The dropout probability.

afterstr

The name of the layer after which the dropout layer will be executed.

nameOptional[str], optional

The name of the dropout layer, by default “dropout”.

Raises#

ValueError

If the layer after is not found in the block.

prepend_dropout(p: float, name: str | None = 'dropout')#

Prepend a dropout layer to the block.

Parameters#

pfloat

The dropout probability.

nameOptional[str], optional

The name of the dropout layer, by default “dropout”.

run_with_dummy_data()#