Conv2dBlock#
- class deeplay.blocks.conv.conv2d.Conv2dBlock(*args, **kwargs)#
Bases:
BaseBlockConvolutional block with optional normalization and activation.
Attributes Summary
Methods Summary
Calls the forward method with dummy data to build the block.
Returns the default activation function for the block.
Returns the default merge operation for the block.
Returns the default normalization function for the block.
Returns the default shortcut function for the block.
normalized([normalization, mode, after])pooled([pool, mode, after])strided(stride[, remove_pool])transposed([transpose, mode, after, ...])upsampled([upsample, mode, after])Attributes Documentation
- expected_input_shape#
Methods Documentation
- call_with_dummy_data()#
Calls the forward method with dummy data to build the block.
- get_default_activation() DeeplayModule#
Returns the default activation function for the block.
- get_default_normalization() DeeplayModule#
Returns the default normalization function for the block.
- get_default_shortcut() DeeplayModule#
Returns the default shortcut function for the block.
- normalized(normalization: ~typing.Type[~torch.nn.modules.module.Module] | ~deeplay.module.DeeplayModule = <class 'torch.nn.modules.batchnorm.BatchNorm2d'>, mode='append', after=None) Self#
- strided(stride: int | tuple[int, ...], remove_pool=True) Self#